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This study aims at analyzing how Pythagoras’ theorem is handled in three versions of 
Taiwanese textbooks using a conceptual framework of a constructive-empirical 
perspective on abstraction, which comprises three key attributes: the generality of the 
object, the connectivity of the subject and the functionality of diagrams as the focused 
semiotic tool. The results show that Taiwanese textbooks intended to develop the object 
through the variation among the levels of generality as well as between more and less 
familiar connections. The procedural diagrams were less provided than the conceptual 
diagrams, and the diagrams required more processing were less provided than the 
diagrams required less processing. Nonetheless, there were differences among the three 
textbooks. On the basis of similarities and differences, we discuss issues related to the 
learning and teaching of mathematics.    
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INTRODUCTION  

In order to understand how textbook authors design mathematics textbooks, , 
there are some studies analyzing problem types, including routine problems versus 
non-routine, open-ended versus close-ended, traditional versus non-traditional, and 
application versus non-application problems (Zhu & Fan, 2006), problem-solving 
procedures including four problem-solving stages and heuristics such as ‘acting it 
out’, ‘looking for a pattern’, etc. (Fan & Zhu, 2007), procedural complexity denoting 
the number of steps in a common solution method and including three different levels 
of complexity (Vincent & Stacey, 2008), cognitive demand including memorization, 
procedures without connections, procedure with connections, and doing 
mathematics (Bayazit, 2013; Jones & Tarr, 2007).  

Correspondence: Kai-Lin Yang,  
Department of Mathematics, National Taiwan Normal University, No. 88, Ting-Chou Rd. 
Sec. 4, Taipei, Taiwan.  
E-mail: kailin@ntnu.edu.tw 
doi: 10.12973/eurasia.2016.1237a 

mailto:kailin@ntnu.edu.tw


K.-L. Yang  

914 © 2016 iSER, Eurasia J. Math. Sci. & Tech. Ed., 12(4), 913-930 

  
 

There are other studies focusing on introduction 
or description of mathematical concepts and 
reasoning in textbooks. That is, how some specific 
concept is introduced in textbooks or how 
opportunities to learn mathematical reasoning are 
provided. For instance, the concept of average is 
presented as a computational algorithm or as a 
representative of a data set (Cai, Lo, & Watanabe, 
2002), the concept of fractions is treated as part-
whole, ratio, operator, quotient, or measure 
(Charalambous, Delaney, Hsu & Mesa, 2010), and 
reasoning-and-proving is classified as identifying a 
pattern, making a conjecture, providing a proof and 
providing a non-proof argument (Stylianides, 2009). 
These analyses have gone beyond telling us the 
challenging levels of problems, the different 
strategies or purposes of solving problems in 
textbooks.  

Nonetheless, these studies focused more on task 
analyses, and less on detailed accounts of the process 
of learning one mathematical topic from all 
information of the topic in textbooks. Many 
researchers indicate that mathematics textbooks not 
only constitute an essential part of the curriculum 
but play a significant role in teaching of mathematics 
(e.g. Ball & Cohen, 1996; Xenofontos & 
Papadopoulos, 2015). Drawing on the lack of 
detailed accounts of how the intended process of 
leaning mathematics is arranged by textbooks as 
well as the importance of textbooks for affecting 
students’ learning and teachers’ curriculum 
development, refining our understanding of 
mathematics textbooks should go on.  

A research forum held at the 26th international conference of PME discussed two 
different contexts for abstraction: in mathematics and in mathematics learning 
(Boero et al., 2002). At the forum, Gray and Tall, Hershkowitz, Schwarz, and Dreyfus, 
and Gravemeijer, presented three models of abstraction. Gray and Tall (2007) held a 
view of a natural process of mental compression as abstraction. Hershkowitz, 
Schwarz, and Dreyfus (2001) considered mathematical abstraction as an activity of 
vertically reorganizing previously constructed mathematics into a new mathematical 
structure, and of elaborating a model for the genesis of abstraction. Gravemeier 
(2007) focused on how to encourage the use of abstraction in instruction and viewed 
abstraction as construction within which students construe mathematical knowledge 
grounded in their earlier informal experience. In addition to Gravemeijer’s (2007) 
study, White and Mitchelmore (2010) proposed the model of teaching for abstraction, 
which has been applied to many topics of elementary school mathematics—decimals, 
angles, and ratios. Both cognitive and didactical research provide us insightful 
understanding of abstraction for learning and teaching. However, these ideas have 
not been used to shed light on the intended curriculum. As abstraction has been 
recognized as a key adaptive mechanism of human cognition and an essential process 
in the learning of mathematics, this study aims at understanding how mathematics 
textbooks manage abstraction. 

In reporting this study, we begin with a conceptual framework used for the 
analysis of the intended abstraction behind mathematics textbooks. Then, with 

State of the literature 

 Most of previous studies on textbook analysis 
do not focus on detailed accounts of the 
progression of learning to analyze 
mathematics textbooks. 

 As abstraction has been recognized as a key 
adaptive mechanism of human cognition and 
an essential process in the learning of 
mathematics, to understand how mathematics 
textbooks manage abstraction is crucial. 

 Skemp’s and Piaget’s view of abstraction can 
be recognized as a constructive-empirical 
perspective, which attends to the relationship 
between the specific experience from which 
something is to be abstracted and the 
abstracted generality and assumes that the 
latter is more abstract than the former. 

Contribution of this paper to the literature 

 This study is the first to analyze both 
description and work-examples in textbooks 
from the perspective of abstraction.  

 The three attributes - generality of the object, 
the connectivity of the subject and the 
functionality of diagrams are substantiated by 
comparing three versions of mathematics 
textbooks.  

 The comparison shows that different 
approaches are exploited to develop the 
subject’s abstraction of Pythagoras’ theorem. 
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explanation of the data and methodology, we describe the results from the textbook 
analysis which shows the patterns of abstraction in three different versions of 
Taiwanese secondary textbooks in relation to Pythagoras’ theorem. The topic is 
selected due to three reasons. First, Pythagoras’ theorem can connect between 
abstract geometric ideas and concrete perceptual images, which are fused as figural 
concepts (Fischbein, 1993). This connection provides us with greater opportunity to 
observe intended abstraction, including generalization (ref. Radford, 2003), behind 
textbooks. Second, this theorem can be learnt through students’ movements from 
contextual, pre-symbolic to symbolic generalizations (see Moutsios-Rentzos, Spyrou 
& Peteinara, 2014), which is part of abstraction. Third, the topic is important in the 
history of mathematics (Maor, 2007), and learning how to prove Pythagoras’ theorem 
can be of good use in nurturing students’ creativity in secondary schools (Tam and 
Wang, 2012). 

Taiwanese students’ performance in mathematics literacy is internationally 
ranked at the top level (OECD, 2009; 2012). Besides, around 36% of ninth graders 
could construct a correct proof which required combining several geometric 
arguments (Heinze, Cheng & Yang, 2004). Textbooks are one important source for 
Taiwanese students to learn mathematics when 92 % of Taiwanese secondary 
teachers reported that they used textbooks as basis for teaching mathematics (Mullis, 
Martin, Foy & Arora, 2012). Mathematics textbooks are developed by private 
publishers who invite university professors and school teachers to collaboratively 
write textbooks. Then, all textbooks must pass through a reviewing process by 
university professors appointed by National Academy for Educational Research in 
Taiwan. Teachers can decide which textbook series is going to be used, but the same 
textbook is used at the same school. In recognition of students’ good performance, the 
influence of textbooks on classroom practice as well as both developing and reviewing 
process of textbooks, this study pays attention to Taiwanese mathematics textbooks. 

CONCEPTUAL FRAMEWORK 

Before conceptualizing the constructive-empirical perspective on abstraction, we 
emphasize the function of textbooks in transposing knowledge with the assumption 
that “Bodies of knowledge are, with a few exceptions, not designed to be taught, but 
to be used.” (Chevallard, 1988, p. 6). No mathematics presented in textbooks is the 
original invention of some mathematicians, and textbooks need to transpose 
knowledge from being used in development and practice to being taught and learnt 
in class. Consequently, the textbooks are a didactic transposition and reflect how 
knowledge is learned (Kang & Kilpatrick, 1992). In this study, we treats textbooks as 
playing an active role in taking the object, the subject, and the semiotic tool into 
account, and then explored how mathematics textbooks transpose mathematical 
knowledge. 

According to Skemp (1986), abstraction is a mental activity through which humans 
become aware of similarities in their experiences, which are classified to create 
classes of experiences against which new experiences are compared and assimilated. 
Skemp describes these classes of experience as concepts, which fall into two forms, 
primary and secondary. The former forms of concepts are derived directly from 
experience, whereas the latter are abstracted from the former. Mitchelmore and 
White (2007) call this view of abstraction an empirical abstraction which is literally 
one of three forms of abstraction described by Piaget but more profound than Piaget’s 
notion of empirical abstraction. Empirical abstraction is referred to the identification 
of the superficial properties of physical objects by Piaget, whereas empirical 
abstraction is referred to the identification of underlying structures of general 
experience by Skemp.  
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In addition to empirical abstraction, much of the work on abstraction in the 
development of mathematical understanding also draws on Piaget’s (1985) 
description of two other forms of abstraction: pseudo-empirical and reflective 
abstraction. Empirical abstraction focuses on objects and their properties, whereas 
both pseudo-empirical and reflective abstraction focuses on the actions and their 
relations. However, there is qualitative difference in what is acted. Pseudo-empirical 
abstraction teases out actions on external objects, and reflective abstraction teases 
out actions on internal objects. In particular, reflective abstraction is “drawn from the 
general coordination of actions or of operations” (Piaget, 1980, pp. 89-97). In addition 
to coordination, Piaget distinguishes three other processes: interiorization, 
encapsulation and generalization. Furthermore, Dubinsky (1991) identifies reversing 
as the fifth process of reflective abstraction and extends Piaget’s theory to analyze the 
development of concepts in advanced mathematics. Those processes involve both 
inductive (from the specific to the general) and deductive reasoning (from a 
hypothesis to generate logically necessary inference). It implies that abstraction is an 
important construct for analyzing the learning of any mathematical content at any 
level. For instance, Simon, Tzur, Heinz, and Kinzel (2004) elaborated Piaget’s 
reflective abstraction in order to describe a basic mechanism for pedagogical theory. 
Silverman and Thompson (2008) applied it not only to students’ learning but also 
teachers’ learning. Herein, we investigate through what abstraction processes are 
arranged in textbooks. 

Yang (2013) recognizes Skemp’s and Piaget’s view of abstraction as a constructive-
empirical perspective, which attends to the relationship between the abstracted 
generality and the specific experience from which something is to be abstracted, and 
assumes that the former is more abstract than the latter. From this perspective, the 
relationship between what is to abstract and what is abstracted can be discriminated 
by the relative degree of abstractness of the object, and it can be perceived or 
constructed by the subject with the help of the semiotic tool (in the sense of Peirce’s 
representamen). That is, the subject (the learner) can develop the understanding of 
the object (the mathematical content) from physically or mentally interacting with 
semiotic tools. Moreover, three key components of abstraction are identified: the 
object, the subject and the semiotic tool, which are derived from not only the 
constructive-empirical but also the dialectic perspectives on abstraction (see Yang, 
2013). However, we first analyze how Taiwanese mathematics textbooks arrange 
abstraction based on the constructive-empirical perspective due to the limit of space, 
and refer to the essential attribute of each component – the generality of the object, 
the connectivity of the subject and the multiplicity of the semiotic tool, to formulate 
research questions for textbook analyses.  

As the generality of the object is related to the connotation and extent of the object 
and assumed that the relative degree of abstractness of the object can be 
distinguished, we can investigate how the sequence of less and more generality is 
arranged by textbooks. As the connectivity of the subject is concerned with the 
connection made to the subject’s experience and assumed that the subject can make 
unfamiliar ideas familiar based on the connection to previous experience (Hazzan, 
1999), we can investigate how the sequence of less and more connectivity is arranged 
by textbooks. As for the semiotic tool, which includes words, numbers, symbols, 
figures, graphs, pictures, tables, real scripts, manipulative instruments, and so on 
(Goldin & Kaput, 1996; Lesh, Post, & Behr, 1987), we mainly focus on figures, graphs, 
pictures and tables, which are all viewed as diagrams, due to that the geometric topic 
is much related to diagrams (Jones & Fujita, 2013). Hence, we shift from the 
multiplicity of the semiotic tool to the functionality of diagrams, and investigate how 
textbooks arrange diagrams to represent the object. 



 Analyzing mathematics textbooks  

© 2016 iSER, Eurasia J. Math. Sci. & Tech. Ed., 12(4), 913-930   917 
 
 

METHOD 

Content analysis 

This study used a content analysis methodology to analyze the selected topic, 
Pythagoras’ theorem. In order to define the analysis units, we first classified texts by 
categories of text goals which include: (1) to introduce something related to one 
object [I], (2) to explore one object [Exp], (3) to describe one object [D], (4) to explain 
or elaborate one object [EL], (5) to show worked examples related to one object [W], 
(6) to provide questions for practice [P], and (7) to talk about one object [T]. Most of 
the previous studies on mathematics textbook analysis focused on the fifth and sixth 
text goals which are realized through problems. However, we focused on the whole 
text as to the topic in relation to Pythagoras’ theorem. In general, one paragraph of 
the same text goal or one problem was identified as one analysis unit. It should be 
noted that several sub-questions of the same problem context is treated as an analysis 
unit. Then, each analysis unit was coded regarding each attribute. The last step was 
to enter the data into an Excel file for statistical analysis. The classification scheme of 
each attribute would be elaborated after Samples section. 

Samples 

This study compares three different mathematics textbooks: Kang-Hsuan (Hung, 
2013), Han-Lin (Chang, 2011) and Nani (Tso, 2011). The three versions of 
mathematics textbooks for the junior high school follow the same national curriculum 
and are published by three main textbook publishers in Taiwan. In Kang-Hsuan and 
Han-Lin, Pythagoras’ theorem is used as a title of Section 2-3. In Nani, Gougu (Leg-leg) 
theorem1  is used as a title of Section 2-3. This topic covers 18 pages in each of the 
three textbooks. One research assistant identified the analysis units, and the author 
checks them again. There are 53, 60 and 50 analysis units respectively in Kang-Hsan, 
Han-Lin and Nani. The topic is assumed to teach in 5 to 6 sessions (45 minutes per 
session). 

Development of a coding scheme 

In order to develop a coding scheme that allow for a practical analysis of 
abstraction, we not only refer to Yang’s (2013) framework but also review some 
literature for formulating the operational definitions of the three attributes of 
abstraction – the generality of the object, the connectivity of the subject and the 
functionality of diagrams in the section.  

How can the levels of generality be distinguished? According to Gray and Tall 
(2007), “perceptions of and actions on objects are reflected upon, producing an 
increasingly sophisticated mental framework (p. 29)”, which leads to the formulation 
of three mathematical worlds. Each world entails its own particular way of developing 
greater and greater sophistication from a lower to a higher abstract level of warrants 
for mathematical truth (Tall, 2004). The substantial content of the generality can be 
derived from comparing sub-objects presented in textbooks regarding one topic. For 
instance, the generality of Pythagoras’ theorem can increase from one right-angled 
triangle as an example without the focus on the logic of the theorem (if p then q), one 
right-angled triangle as a generic example embodying the logic of the theorem, to a 
conditional statement for any right-angled triangle and its proof. Accordingly, each 
analysis unit can be classified into specific, generic or formal level. For the formal 
level, we further distinguish whether or not proof is presented due to proof is a special 
genre of mathematics and difficult for students to learn. 

                                                           
1 Pythagoras’ theorem was known as the "Gougu Theorem” (勾股定理) in China during the Han 

Dynasty (202 BC to 220 AD) (see http://en.wikipedia.org/wiki/Pythagorean_theorem) 

http://en.wikipedia.org/wiki/Pythagorean_theorem
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White and Mitchelmore (2010) explicitly express that “without a strong link 
between fundamental mathematical concepts and students’ experience, any 
abstraction approach is likely to falter (p. 209).” However, the textbooks rather than 
students’ learning or thinking are analyzed in this study. How can the degree of 
connectivity in textbooks be evaluated? We focus on to what extent the assumed 
subject’s prior knowledge is connected, and the connections are classified as either 
less or more familiar. The more familiar the subject is and the more connections the 
subject has formed to it, the more concrete the object becomes. Hence, the 
connectivity is classified as either less or more familiarity. The former form focuses 
on the modification of the subject’s experience to reconstruct meaning while the later 
implies the addition of familiar information to the subject’s experience. For instance, 
using previous knowledge to calculate the areas of the squares generated from each 
side of one specific right-angled triangle is more familiar than to generalize or reason 
the relationship among the three sides of one specific right-angled triangle. Applying 
the Pythagoras’ theorem to one typical right-angled triangle is more familiar than to 
one non-typical right-angled triangle. 

Lastly, the diagrammatic representation can be distinguished as two categories: 
procedural diagrams that represent some relations in a sequence of diagrams and 
conceptual diagrams that represent one concept or some relations in one diagram. 
For instance, textbooks may use several sequential figures or one complicated figure 
to prove Pythagoras’ theorem. In order to distinguish the requirement of 
diagrammatical processing, we further classify conceptual and procedural diagrams 
into either less or more requirement to deduce new information from diagrams for 
further reasoning. When analyzing the analysis units, one more category of 
functionality of diagrams is added: diagrams for constructing the object. All of the 
categories are noted as functionality of diagrams. 

In sum, table 1 shows the three attributes and their classifications. As for 
generality, the specific level refers to specific examples without generalization. The 
generic level refers to a generalization from several specific examples and a verbal 
description of the old object which had been taught in the textbook. The formal level 
refers to a verbal description of a new object which had not been taught in the 
textbook as well as an algebraic or symbolic description of an object. As for 
connectivity, the content which looks typical or not difficult based on the assumed 
subject’s previous knowledge is classified as more familiar, whereas the content 
which looks new or complicated, e.g. generating a new object and introducing meta-

Table 1. Three attributes of abstraction and their classifications 

Attribute Description Operational Classifications 

Generality  
 

the connotation and the extent of objects G0: specific level  
G1: generic level 
G2: formal level  
G2-1: without proof, G2-2: with proof 

Connectivity 
 

connections of subjects’ experience with 
objects 

C0: no connection 
C1: more familiar 
C2: less familiar 

Functionality  
 

diagrams used for representing concepts or 
procedures 

F0: no diagram 
F1: conceptual diagrams 
F1-1: less processing, F1-2: more processing 
F2: procedural diagrams 
F2-1: less processing, F2-2: more processing 
F3: diagrams for presenting the object 
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knowledge of the object, is classified as less familiar. As for functionality, one analysis 
unit which has one diagram or several independent diagrams is classified as 
conceptual diagrams required either less or more processing, except that it is used for 
the subject to present the object. One analysis unit which has a sequence of diagrams 
is classified as procedural diagrams required either less or more processing. 

Exemplary coding procedure 

Taking the first page of this topic in the Taiwanese textbook, for example, we 
identified four analysis units, Units 1 to 4 (U1 to U4). As shown in Figure 1, first of all, 
U1 provides practice for students to revise their familiar and related concept of 
square areas. Then, U2 introduces mathematical terms related to sides of right-angled 
triangles. Next, U3 describes the relationship among the three square areas, which is 
presented with one specific example. At the end of this page, U4 explores the 
generality of this relationship by asking one question. Accordingly, the first four 
analysis units were identified as [P], [I], [D] and [Exp] respectively. 

 
Figure 1. First four analysis units in Nani (Adapted from Yang, 2013) 
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When analyzing these analysis units from the generality of the object, we pay 
attention to the levels of generality. The common and main object in the analysis units 
is right-angled triangles. U1 and U3 are coded as G0 (specific level) due to their 
reference to a specific right-angled triangle without generalization. Although 
algebraic symbols appear in U3, they are just used to represent the side length of the 
specific triangle. U2 and U4 are both coded as G1 (generic level) due to their reference 
to two right-angled triangles for introducing the terms “hypotenuse” as well as “leg” 
and other right-angled triangles for generalizing the relationship respectively. 

When analyzing these analysis units from the connectivity of the subject, we pay 
attention to the degree of familiarity. We consider the subject from the point of view 
of a ‘typical’ student who has previous knowledge in mathematics textbooks. U1 is 
coded as C1 (more familiar) because it asks the subject to practice using previous 
knowledge. U2, U3, and U4 are all coded as C2 (less familiar) because they were about 
the development of the new sub-objects. U2 is used to know the new terms, U3 is set 
for observing the relationship among the three squares and the length of three sides, 
and U4 askes the subject to generalize the relationship to other right-angled triangles. 

When analyzing these analysis units from the functionality of diagrams, we pay 
attention to both the types of diagrams and the demand of processing. The diagrams 
in U1 and U3 are static figures on the grid and thus belong to the conceptual type. Both 
diagrams are used to count or figure out the areas of the squares and thus require less 
processing of diagrams based on the assumed subject’s previous knowledge, so coded 
as F1-1. The diagrams in U2 are two triangle plates and thus belong to the conceptual 
type. They are used to introduce new mathematical terms and thus require less 
processing of diagrams, so coded as F1-1. U4 was coded as F0 due to no diagram.  

We give the diagrams in figure 2 and 3 to show the difference between F1-1 and 
F1-2. The two diagrams are similar; however, they were coded as F1-1 and F1-2 
respectively due to that the diagram in figure 2 provided all of the required side 
length, but, in figure 3 required the subject to reason the side length of one right-
angled triangle. The majority of analysis units with a sequence of diagrams were 
classified as F2-1, except that the sequential diagrams, as shown in figure 4 coded as 
F2-2, due to the requirement of processing figures to prove a theorem. 

 

Figure 2. The diagram in the 52nd analysis unit in Han-Lin 

 

Figure 3.  The diagram in the last analysis unit in Nani 
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As one part of the work in the Third International Mathematics and Science Study, 
Valverde, Bianchi, Wolfe, Schmidt & Houang (2002) proposed three aspects: content  
(number, measurement, geometry,…), performance expect (knowing, using routine 
procedures, investigating and problem solving, mathematical reasoning, and 
communicating) and perspective (attitudes, careers, participation, increasing 
interest, and habits of mind), to form a framework for comparing textbooks of many 
countries. This framework has examined the textbooks as a whole, focusing on the 
organization of the content across textbooks, and pursued both horizontal and 
vertical approaches to textbook analysis (Charalambous, Delaney, Hsu, 2010). 
Nonetheless, how textbooks treat the generality of the object, the connectivity of the 
subject, the functionality of diagrams and the detail of their sequence within each 
analysis unit or the change of the details from unit to unit is still under question. While 
textbook analysis is deepened into abstraction, our analytical framework serves a 
function of analysing abstraction in textbooks without student data. We agree that 
textbooks can not really represent the implemented curriculum which relies on 
interactions between teachers’ and students’ use textbooks. Nonetheless, this 
framework puts textbooks in an active role to investigate interactions of teachers’ and 
students’ use of   textbooks. 

Reliability of coding 

For testing the reliability of the coding, two research assistants were trained to 
apply the coding scheme in content analysis of the two textbooks. The first six analysis 
units were used to help the two coders understand the codes. The other analysis units 
were double-coded. As a measure of reliability of the coding, the percentage 
agreement between the coders was calculated by dividing the number of agreements 
by the number of agreements plus disagreements. As to the generality, the 
connectivity, and the functionality, the percentage agreements of coders were 88%, 
80% and 93%. The lower percentage agreement of coders for the connectivity was 
due primarily to that one coder limited previous knowledge to the pervious topics 
which has been taught whereas the other coder limited it to both previous topics and 
the content of this topic prior to the analysis unit. All disagreements were resolved by 
discussing among the coders and the author by discussion to achieve consensus. 

RESULTS  

Before reporting the results of the analysis on each attribute of abstraction in turn, 
we first show the frequencies of text goals in the three textbooks. 

 

 

Figure 4. The diagram in the seventh analysis unit in Nani 
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Text goals  

Table 2 showed that the three textbooks did not have similar percentages of the 
analysis units regarding the text goals of exploring one object [EXP] and showing 
worked examples related to one object [W]. The text goals of 13%, 8% and 6% of the 
analysis units were identified as [EXP] in Kang-Hsuan, Han-Lin and Nani. The text 
goals of 64%, 70%, 68% of the analysis units were identified as [W] and practice [P] 
in Kang-Hsuan, Han-Lin and Nani. Accordingly, Kang-Hsuan more likely adopted an 
exploratory approach to developing a new object, e.g. applying this theorem to 
construct a segment of irrational length and the distance formula. Han-Lin and Nani 
more likely adopt a worked-example approach. 

The three textbooks arranged the [EXP] text goal differently. Kang-Hsuan arranged 
four units of [EXP] in the beginning and three units of [EXP] interweaving in the 
middle, and Han-Lin arranged  three units of [EXP] in the beginning, one in the middle 
and one in the end. In contrast, Nani just arranged three units of [EXP] in the 
beginning. Kang-Hsuan adopted an exploratory approach for finding and proving the 
Pythagoras’ theorem, whereas Han-Lin and Nani adopted this approach just for 
finding the theorem. Nonetheless, the three textbooks commonly arranged [EXP] in 
the beginning, and this pattern has been also found in the Japanese textbook (Jones & 
Fujita, 2013). Moreover, another common patterns among the three Taiwanese 
textbooks were that one worked example was followed by one question for practice 
in order to develop the subject’s understanding of the object, and a sequence of 
questions were provided for practice in the end. The high percentage of [P] (all above 
40%) reflects one underpinning pedagogy of using mathematics textbooks as a source 
of questions for practice. 

Generality 

Table 3 showed that the three textbooks had different distributions of the 
generality. Regarding the specific level, Nani provided the most percentage of the 
analysis units. Regarding the generic level respectively, Han-Lin provided the most 
percentages of the analysis units. Regarding the formal level, Kang-Hsuan and Nani 

Table 2. Frequencies of text goals 

Textbook 
Text Goal 

I EXP D EL W P T 

Kang-Hsuan 2/53 
(0.04) 

7/53 
(0.13) 

6/53 
(0.11) 

2/53 
(0.04) 

11/53 
(0.21) 

23/53 
(0.43) 

2/53 
(0.04) 

Han-Lin 4/60 
(0.07) 

5/60 
(0.08) 

6/60 
(0.10) 

2/60 
(0.03) 

13/60 
(0.22) 

29/60 
(0.48) 

1/60 
(0.02) 

Nani 2/50 
(0.04) 

3/50 
(0.06) 

7/50 
(0.14) 

2/50 
(0.04) 

12/50 
(0.24) 

22/50 
(0.44) 

2/50 
(0.04) 

 

Table 3. Frequencies of generality 

 
Textbook 

Generality 

G0 G1 G2-1 G2-2 

Kang-Hsuan 38/53 
(0.72) 

5/53 
(0.09) 

9/53 
(0.17) 

1/53 
(0.02) 

Han-Lin 42/60 
(0.70) 

12/60 
(0.20) 

4/60 
(0.07) 

2/60 
(0.03) 

Nani 38/50 
(0.76) 

3/50 
(0.06) 

6/50 
(0.12) 

3/50 
(0.06) 
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provided the most percentages of the analysis units. It implied that Nani was inclined 
to arrange the generality with the two extreme levels. Contrarily, Han-Lin was 
inclined to arrange more analysis units of the generic level to bridge between specific 
and formal levels. 

The Pythagoras’ theorem was abstracted with specialization and generalization in 
the three textbooks. Nonetheless, the arrangement of specialization and 
generalization was different. In Kang-Hsuan, content analysis showed that 
introducing mathematical terms related to sides of right-angled triangles (G1) was 
followed by asking one question about the possible relationship among the three 
sides of any right-angled triangle (G2-1). Next, several examples were shown at the 
same analysis unit for finding the relationship (G1) and followed by two more 
examples for finding the relationship (G1). Then, the Pythagoras’ theorem was 
described in a formal way (G2-1). After that, one question about the generalization of 
the relationship (G1) was followed by exploring the relationship in a formal way (G2-
1). Lastly, the theorem was stated formally (G2-1). 

In Han-Lin, the first analysis unit was similar to the one in Kang-Hsuan, but 
followed by a historical work about observing the pattern of tiles (G1), rather than by 
asking a general and abstract question. Next, two different equal-sided right-angled 
triangles were explicitly presented in tiles (G1) and followed by one question about 
the generalization of the relationship among the three squares to any right-angled 
triangle (G1). Then, one specific right-angled triangle was provided for exploring the 
relationship among the three squares of the right-angled triangle (G0). The 
relationship extended from equal-sided right-angled triangle to any right-angled 
triangle was described verbally (G1). Lastly, an algebraic proof (G2-2) was presented, 
and the theorem was stated formally (G2-1). 

In Nani, the Pythagoras’ theorem was developed from one specific example (G0), 
followed by introducing mathematical terms related to sides of right-angled triangles 
(G1). Next, the relationship among the three square areas, which was presented with 
one specific example, was described (G0) and followed by one question about the 
extension of the relationship to other right-angled triangles (G1). Then, two specific 
right-angled triangles were provided for exploring the relationship among the three 
sides of the right-angled triangle. Because the two exploratory tasks provided a 
sequence of partial questions specific to one right-angled triangle, the two analysis 
units were identified as the specific level (G0). Lastly, an algebraic proof (G2-2) was 
presented, and the theorem was stated formally (G2-1).  

When counting the number of changing levels between two adjacent units, it was 
found that Kang-Hsuan Han-Lin and Nani provided 37%, 29% and 35% of two 
adjacent units to change levels of generality. That is, Kang-Hsuan and Nani provided 
more opportunities for the subject to transit among the levels than Han-Lin. 
Moreover, we found that Kang-Hsuan and Han-Lin developed the subject’s 
understanding of Pythagoras’ theorem with a generalization-directed approach, 
starting from generic and general examples. On the contrary, Nani developed it with 
a specialization-directed approach, starting from specific examples one by one. 
Although all the three textbooks provided examples for the subject to explore the 
relationship, further analysis indicated that the examples were designed differently. 
To show visual proof of the theorem in one analysis unit, Kang-Hsuan and Han-Lin 
provided, respectively, three and one examples where one right-angled triangle was 
integrated with visual proof, whereas Nani provided one example where one right-
angled triangle and its visual proof were separate. In addition, the three textbooks 
showed different methods to prove Pythagoras’ theorem (see Tam & Wang, 2012). 
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Connectivity  

Kang-Hsuan and Han-Lin started and ended with the less familiar units, whereas 
Nani started with the more familiar unit and ended with the less familiar unit. This 
difference was due to that Nani always started with an exercise for practicing pre-
knowledge related to the new topic in each sub-section. Regarding the text goal of 
[EXP] for developing the relationships among the three sides of an right-angled 
triangle, students were asked to recognize the area of each square generated from 
each side of the right-angled triangle and then identify the relationship among the 
three squares in Kang-Hsuan and Han-Lin. On the contrary, students were asked to 
justify a quadrangle is square, to recognize the square side length and its area, to 
recognize the side length of one right-angled triangle, and then identify the 
relationship among the square of the three sides of the right-angled triangle in Nani. 
The exploratory tasks in Kang-Hsuan and Han-Lin were easier for students to make 
connections with prior knowledge of areas of squares and forming a relationship 
among the three squares of one specific right-angled triangle than the task in Nani. In 
Nani, students were required to find the hypotenuse length of one right-angled 
triangle by reasoning from the area of one square composing of four right-angled 
triangles and one smaller square. Thus, the analysis units of [EXP] for developing the 
relationships among the three sides of a right-angled triangle in Kang-Hsuan and Han-
Lin were coded as more familiar (C1) and the unit in Nani was coded as less familiar 
(C2). 

Table 4 showed that the ratio of the connectivity with more familiar to less familiar 
was around 2 : 1. The chi-square test confirms no significant (p = 0.746) difference 
among the three textbooks. In each textbook, around 40% of the analysis units 
classified as less familiar appeared in the first 10 analysis units, and either 70% or 
80% of the first 10 analysis units belonged to less familiar. This implied that the 
textbooks tried to arrange the object from less familiar to more familiar in the 
beginning. Most of the analysis units in the midst of the sequential analysis units were 
classified as more familiar, and some were classified as less familiar due to the 
requirement of strategies to solve problems and the development of the algebraic 
formula of the distance between two points on a Cartesian plane. The three textbooks 
arranged the last two or three analysis units as less familiar connection. When 
counting the number of changing the strength of connectivity between two adjacent 
units, it was found that Kang-Hsuan, Han-Lin and Nani provided 31%, 27% and 35% 
of two adjacent units to change the strength of connectivity. Nani provided the most 
opportunities for the subject to transit between more and less connection. 

Functionality 

To develop the subject’s understanding of the distance between two points on a 
Cartesian plane, an exploratory activity was provided in Kang-Hsuan, worked-
examples were provided in Han-Lin and Nani. In addition to the difference in text 

Table 4. Frequencies of connectivity 

 
Textbook 

Connectivity 

 C1 C2 

Kang-Hsuan  
 

36/53 
(0.68) 

17/53 
(0.32) 

Han-Lin  
 

41/60 
(0.68) 

19/60 
(0.32) 

Nani  
 

31/50 
(0.62) 

19/50 
(0.38) 
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goals, the diagrams in Kang-Hsuan was distinct from it in Han-Lin and Nani. Two 
points were located on a Cartesian plane with the origin and one unit length marked 
on each axis in Kang-Hsuan. On the contrary, Han-Lin and Nani provided a Cartesian 
plane with integer units or grids as well as the two supplementary lines parallel to the 
two axes respectively. Thus, the diagram in the analysis unit for developing the 
understanding of the distance between two points in Kang-Hsuan was coded as the 
conceptual diagram required more processing (F1-2) and the unit in Han-Lin and 
Nani were coded as the conceptual diagram required less processing (F1-1). 

Table 5 showed that the three textbooks had different distributions of the 
functionality. Han-Lin provided the least percentage of the analysis units without 
diagrams, and the most percentages of the analysis units with conceptual diagrams 
required less processing, 27% and 55% respectively. There were more percentages 
of the analysis units with conceptual diagrams required more processing in Kang-
Hsuan and Nani than in Han-Lin. Two similar diagrams for constructing two points on 
a Cartesian plane, shown in figure 5, were both provided by Han-Lin. It implied that 
Han-Lin more intended to utilize conceptual diagrams to support the subject’s 
understanding of the object. On the contrary, Kang-Hsuan and Nani provided more 
opportunities for the subject to process conceptual diagrams. 

CONCLUSION AND DISCUSSION 

The results show that the three textbooks showed the pattern that one worked 
example was followed by one question for practice in order to develop the subject’s 
understanding of the object. In the end, the three textbooks provided a sequence of 
questions for practice. As for the generality of the object, Kang-Hsuan and Han-Lin 
developed the subject’s understanding of Pythagoras’ theorem with a generalization-
directed approach, and Nani developed it with a specialization-directed approach in 
the beginning. The generalization-directed approach may be more abstract in the 
beginning, but provide the need for coordination (one construction in reflective 
abstraction), whereas the specialization-directed may be less abstract, but require 
more generalization (one construction in reflective abstraction) from specific 

Table 5. Frequencies of functionality 

 
Textbook 

Functionality 

F0 F1-1 F1-2 F2-1 F2-2 F3 

Kang-Hsuan 20/53 
(0.38) 

19/53 
(0.36) 

10/53 
(0.19) 

2/53 
(0.04) 

2/53 
(0.04) 

0/53 
(0.00) 

Han-Lin 16/60 
(0.27) 

33/60 
(0.55) 

5/60 
(0.08) 

3/60 
(0.05) 

1/60 
(0.02) 

2/60 
(0.03) 

Nani 16/50 
(0.32) 

20/50 
(0.40) 

10/50 
(0.20) 

3/50 
(0.06) 

1/50 
(0.02) 

0/50 
(0.00) 

 

 
Figure 5. The diagram for constructing two points and calculating their distance in Han-Lin. 
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examples. It is difficult to determine which approaches is better without teaching 
experiment, and different approaches in textbooks may need different teaching skills.  

For thinking mathematically, both specialization and generalization are necessary 
(Mason, Burton & Stacey, 1984). Mathematics textbooks can provide specialization 
and generalization by changing the levels of generality, e.g. from the formal to the 
specific level, or from the generic to the formal level. Changing the levels of generality 
could provide more challenge than support during abstraction. For instance, students 
generalize the specific case to the formal property, and specialize the formal property 
to the specific application. We found that Kang-Hsuan and Nani more frequently 
changed the levels of generality to challenge the subject’s abstraction than Han-Lin, 
while Han-Lin and Nani provided more opportunities for the subject to experience 
the formal level. 

As for the connectivity of the subject, the three textbooks showed a similar pattern. 
They started with a concise development of Pythagoras’ theorem and its proof by 
arranging less familiar connection, proceeded to one worked example and one 
corresponding practice by arranging more familiar connection, next followed by the 
application of the theorem to developing the concept of the distance between two 
points on a Cartesian plane, and ended with review exercises and the appreciation of 
another proof for the theorem. However, Nani arranged more familiar units in the 
beginning although provided more percentage of analysis units with less connectivity 
and more opportunities for the subject to transit between less and more connections 
than the other two textbooks. It could indicate that the underpinning pedagogical 
strategies in Nani included to utilize both more familiar content as the initial stage for 
the subject to learn mathematics meaningfully (White & Mitchelmore, 2010), and less 
familiar content as opportunities for the subject to learn how to make unfamiliar 
mathematical knowledge more familiar (Hazzan & Zazkis, 2005). Nonetheless, it is 
still an issue how to arrange and balance between familiar and unfamiliar content in 
mathematics textbooks. 

As for the functionality of diagrams, more than 60% of the analysis units provided 
diagrams, and there were less procedural diagrams in the three textbooks. It could 
imply that the textbooks less portrayed mathematics as a doing subject in virtue of 
that the procedural diagrams are more likely interpreted as suggesting that 
mathematics is constructed by doing than the conceptual diagrams (Morgan, 1996). 
Moreover, textbooks utilizing conceptual diagrams required more processing may be 
more difficult for the subject to understand in virtue of that more operative 
apprehension is required to mentally operate on the conceptual diagrams and then to 
meaningfully look at the object (Duval, 1995). 

Mathematical objects become known through semiotic means (Radford, 2002). On 
one hand, multiple semiotic tools are used to support the subject’s understanding. On 
the other hand, the multi-semiotic nature of mathematics may result in difficulties 
inherent in the learning of mathematics (O’Halloran, 2000). We conjecture that 
textbooks could make the object visible by conceptual diagrams required less 
processing, as well as operable by procedural diagrams required more processing. As 
we found in this study, the Han-Lin more intended to support the subject by making 
the object visible, and the three textbooks commonly less intended to support the 
subject by making the object operable.  

In terms of the three attributes: the generality of the object, the connectivity of the 
subject and the functionality of diagrams, we found that Nani was the most 
challenging textbook in comparison to the other two textbooks, and there were two 
common features of Taiwanese mathematics textbooks. One was that the variation 
among the levels of the generality as well as between less and more familiar 
connections was arranged to learn Pythagoras’ theorem. We interpret the finding by 
referring to the discernment of variations as one key to learning (Marton & Booth, 
1997). Through experiencing the variation arranged in textbooks, students are 
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assumed to “shift from seeing relationships as specific to the situation to seeing them 
as potential properties of similar situations (Wason & Mason, 2006, p. 94)”. 

The second common feature is related to the functionality of diagrams. That is, the 
procedural diagrams were less provided than the conceptual diagrams, and the 
diagrams required more processing were less provided than the diagrams required 
less processing. According to the suggestion that “provide sequences of micro-
modeling opportunities, …, that nurture shifts between focusing on changes, 
relationships, properties and relationships between properties (Wason & Mason, 
2006, p. 109)”, it is suggested to provide more procedural diagrams required more 
processing in textbooks. Nonetheless, empirical studies are necessary to justify the 
implication. 

According to Pingel’s (2010) work, the main difference in textbook analysis is 
between didactic analysis and content analysis. While the former focuses on the 
pedagogy behind the text, the latter examines the content of the text itself.  One 
contribution of this study is that attention has been given, as far as possible, to 
didactic analysis, i.e. the process of abstraction in this study. A constructive-empirical 
perspective on abstraction provides a way of conceptualizing the intended process of 
abstraction behind textbooks. We must admit that we cannot make any claims about 
an ideal distribution for each attribute of abstraction and about a perfect sequence of 
classifications for each attribute. Nonetheless, we elaborate the three attributes for 
evaluating the features of textbooks based on the above conclusion.  

Although this study is descriptive, it is the first to analyze both description and 
work-examples in textbooks from the perspective of abstraction. At fine-grained 
analysis of abstraction behind textbooks, the attributes of generality, connectivity and 
functionality can be viewed as alternative dimensions of variation to design a 
sequence of didactic texts. In addition, the three attributes of abstraction elaborate 
how mathematics textbooks approach to an overarching dilemma of the balance 
between supporting and challenging the subject’s learning of the object represented 
by the semiotic tools. 
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